Bagging Constrained Equity Premium Predictors∗

نویسندگان

  • Eric Hillebrand
  • Tae-Hwy Lee
  • Marcelo C. Medeiros
چکیده

The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity of the regression coefficient and positivity of the forecast. Bagging constrained estimators can have smaller asymptotic mean-squared prediction errors than forecasts from a restricted model without bagging. Monte Carlo simulations show that forecast gains can be achieved in realistic sample sizes for the stock return problem. In an empirical application using the data set of Campbell, J., and S. Thompson (2008): “Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?”, Review of Financial Studies 21, 1511-1531, we show that we can improve the forecast performance further by smoothing the restriction through bagging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Equity Premium: Global Historical Average versus Local Historical Average and Constraints∗

The equity premium, return on equity minus return on risk-free asset, is expected to be positive. We consider imposing such positivity constraint in local historical average (LHA) in nonparametric kernel regression framework. It is also extended to the semiparametric single index model when multiple predictors are used. We construct the constrained LHA estimator via an indicator function which ...

متن کامل

Let’s Do It Again: Bagging Equity Premium Predictors

The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We propose bootstrap aggregation (bagging) as a means of imposing parameter restrictions. In this context, bagging results in a soft threshold as opposed to the hard threshold that is implied by a simple restricted estimation. We show anal...

متن کامل

A Quantile Regression Approach to Equity Premium Prediction

We propose a quantile regression approach to equity premium forecasting. Robust point forecasts are generated from a set of quantile forecasts, using both …xed and time-varying weighting schemes, thus exploiting the entire distributional information associated with each predictor. Further gains are achieved by incorporating the forecast combination methodology in our quantile regression setting...

متن کامل

Estimating the Equity Premium

To estimate the equity premium, it is helpful to use finance theory: not the old-fashioned theory that efficient markets imply a constant equity premium, but theory that restricts the time-series behavior of valuation ratios, and that links the cross-section of stock prices to the level of the equity premium. Under plausible conditions, valuation ratios such as the dividend-price ratio should n...

متن کامل

Estimating the Equity Premium

To estimate the equity premium, it is helpful to use finance theory: not the old-fashioned theory that efficient markets imply a constant equity premium, but theory that restricts the time-series behavior of valuation ratios, and that links the cross-section of stock prices to the level of the equity premium. Under plausible conditions, valuation ratios such as the dividend-price ratio should n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013